搞笑表情我裤子都脱了表情微信表情
怕释评淼睦砺塾牖镜牟爸媒岷掀鹄础8美砺塾美次?或(AND/OR)树中每一个结论建立起所谓的确定性因子(图5.10)。
这里,Fi是使用者指定给一事实的确定性因子,Ci表明一结论的确定性因子,Ai是产生规则所预期的可信度。确定性因子在AND节点和OR节点处指向前面的式子进行计算。如果一个确定性因子为0.2或更小,相应事实的真假被看作是未知的,就规定其值为0。
该程序计算出归纳合理性的大小取决于保证事实的多少。这种方式使我们想起鲁道夫·卡纳普的归纳理论。卡纳普自然是不相信培根的普遍归纳结论的。结论总是演绎性的。对此不需要波普尔式忠告,否则专家系统不会运行。然而,像MYCIN系统中所用的概率测量则使得该系统对于使用者更透明。
另一方面,也可以这样说,在此采用了“假说和检验”策略的波普尔纲领,即产生出最有趣的假说并进行严峻检验。有这样的程序,有助于用统计数据构造起线性的因果解释。另一些程序运用昔日哲学家的知识,归纳推理是单调的,即意味着从一组前提归纳地导出的结论,可能并不是前提的协调拓展。例如,鸟会飞,吱吱叫是鸟,于是推论出吱吱叫会飞,但是它不会飞,如果我知道吱吱叫是鸵鸟。
另一种策略是将复杂问题分解成简单部分或复杂性较小的子问题,例如乔治·波利亚的启发性数学手册《如何求解》中就使用了这种策略。因此,应用领域必须允许分解为独立的部分。但是,显然,相关性复杂网络并不总能分解而不改变系统的原先状态。例如,人类环境的生态网络或精神病医生必须要分析的复杂的心灵相关性。系统并非总是其部分之加和。
科学哲学中的一些划界可以翻译为以知识为基础的系统的性质。如果研究使得理论概念得到广泛运用而成为一个理论的固有特性,那么发现过程就可以描述为依赖理论的(理论推动的)。相反的观点,通常叫做培根观点,把大批数据作为其起始点。那么,发现过程就称作数据推动的。在理论的和数据的知识处理之间的划界,在AI中是众所周知的。
现在我将从以知识为基础的系统中勾画出一些程序,这些系统使得各种各样学科的任务得以完成,其优点前面也已经提到了。我的第一个例子涉及到数学。AM是一个以知识为基础的系统,可以说,它从数论中递归地产生出和重新发现了概念。与经验科学中的程序形成鲜明对照的是,AM成功的标准并非是一个概念与经验数据的吻合,“有趣”的方面却是它产生出例子、新问题等等的能力。这种程序是1977年用LISP语言写出的,始于诸如集合、表格、相等和操作这样的基本概念,可以提出引导发现过程的建议。启发过程是在原来的基础上提出新任务并创立新概念。新的任务按照其有趣的程度整理成一定次序。由若干不同启发过程提出的种种任务,比由单个规则提出的任务更为有趣。
运用这种措施来引导它对数学概念空间进行搜索,AM为整数、乘法和质数定义了概念,并发现了关于质数的命题(例如因子唯一分解性定理)。
不过,更深入的分析表明,对发现的历史过程进行模拟的要求是难以满足的。AM的成功完全决定于编程语言LISP的特征。然而,分析显示了与人们研究过程的有趣类似。
如同其名称LISP表明的,符号表是系统地作出的。两个表可以递归地定义为相等的,当两者是原子的且原子是相等的,否则当表头是相等的且表的其余部分是相等的。在LISP中,递归的布尔函数标记如下:
(DE LIST-EQUAL(XY)
(COND((OR(ATOM X)(ATOM Y))
(EQ X Y))
(T(AND
(LIST-EQUAL(CAR X)(CAR Y))
(LIST-EQUAL(CDR X)(CDR Y))))))
这里,CAR和CDR分别是LISP中,对于给定的符号表进行表头和表的其余部分分类的基本操作。AM的一个启发的概括规则推广了等价这一术语。然后,两个表被称作“广义相等的”,如果两者是原子的且原子是相等的,否则表的其余部分是“广义相等的”。在LISP中:
(DEL-E-1(XY)
(COND((OR(ATOM X)(ATOM Y))
(EQ X Y)
(T(L-E-1(CDR X)(CDR Y)))))
由此推广,所有具有相同长度的表都被看作是等价的。它们定义了叫做“数”的一类。儿童面对具体对象时实现的这种发现过程,由AM通过变换规则进行了模拟。加法是两个表的连接。由启发变换规则来形成已产生概念的逆时,发现了质数概念。在AM基础上改进的EURISKO(1983),不仅仅可以发现新的概念,还可以发现新的启发过程。
一系列叫做BACON的程序对定量经验定律的发现进行了分析。BACON系统的名字取自弗朗西斯·培根,因为其中运用了培根关于科学推理性质的思想。它们是数据驱动的知识处理系统,其中包括数据收集,找出在两个或更多个变量之间的规则并对其进行检验。BACON的基本方法并不需要涉及数据的语法意义,它们对于数据进行操作,不对数据的结构作任何特殊的假定。有时,需要人们对于独立项进行实验控制,传统的“一次改变一项”的方法可以用来从相关变量中分开每一独立项的效应。BACON程序可以再产生出物理定律,包括波义耳定律、开普勒第三定律、伽利略定律和欧姆定律。
有关考察表明,这种以知识为基础的系统至少要遵从这样的前提条件:对于不同学科间规律的关联,应该满足同样的方法论和启发框架条件。相应的以知识为基础的系统,不仅仅是再产生一定的定律,这些定律是在不同的历史背景中发现的,而且也对称地产生出完整的方法论概念的范围和挑选出有趣的应用。最新的BACON程序不仅仅是数据推动的,因而是严格的意义上的“培根式的”,而且还是理论推动的。在其对称性和守恒定律的理论前提下,它产生出了例如动量守恒定律。
另一系列程序能够从经验数据中归纳出定性定律(GLAUBER,STAHL,DALTON)。这些程序还可以从一些现象中归纳出结构性和解释性模型。定性定律通常是化学中的定律。
科学家与机器之间的竞争并非是有意的。不过,对于科学定律和理论做出系统的结构性分类已经实现。它可以使人们对科学定律及其发现条件的复杂性进行新的洞察。
对于科学发现的多种多样活动的若干方面,诸如发现定量定律,产生出定性定律,推导出物质的成分和提出结构模型。一种整合的发现系统已经显示出曙光,它把个别系统作为组件结合起来。每一组件都接受其他一个或多个组件的输入。
例如,STAHL集中在确定化学物质的成分上,而DAL-TON则关心反应中涉及到的微粒数目。因此,STAHL可以看作是,为DALTON所论的问题奠定了详细的结构模型基础。以这种方式,有可能发展起越来越复杂的以知识为基础的系统,将研究分解为知识处理和问题求解。
甚至在这样的扩大了的研究框架中,我们仍然没有涉及到实验计划或新测量手段的发明所依赖的机制。任何固有的概念与实施测量的实验安排结合起来,都可以用作一种科学的工具。在此情形下,工具的发现恰好也就与概念自身的发现是重合的。
还有一些以知识为基础的系统,它们考虑了实验的设计以及它们与其他科学研究活动的相互作用。在图5.11中示意了一个叫做KEKADA的系统(由西蒙研究小组发明),其中有假说产生者、实验选取者和预期设定者等等。它已经发展到为生物化学中的实验设计建立模型(克雷布斯1935年发现尿素循环)。如同知识工程师,西蒙和他的小组分析了克雷布斯的实验室记录,定义了他的研究方法论规则,并将其翻译成LISP类型的编程语言。
如果该系统没有确定哪一任务继续进行,问题选取者就将决定该系统将继续进行某一任务。当遇到了新的问题时,假说产生者就造出假说。假说或策略建议者将选取一种策略继续进行下去。然后,实验建议者将提出将要进行的实验。两种类型的启发过程可能都需要决策者。实验者的结果由假说修订者和确证修订者来加以解释。合适时,问题产生者可能把新问题加入进来。如果实验的结果与对于实验的预期相抵触,那么对于这种迷惑人的现象的研究就成为一个任务,并列入议程。
甚至该系统的组件也是一种操作者,它是由产生规则表来定义的。除了专业领域启发过程以外,系统还包含一般的规则,它们是一般研究方法论的部分。引人瞩目的是,特定的规则定义了这样的情形,即实验结果是某种“迷惑人的现象”。科学发现因此就成为了由问题求解启发过程引导的一个渐进过程,而不是由个别的“洞察闪光”或突然飞跃所导致的。这些以知识为基础的系统的例子,在例如程序DENDRAL是化学家的实验室助手的意义上,可以解释为哲学家对科学进行研究的助手。借助它们,可以对某些启发性规则产生的整个可能规律的空间进行调查。但是,它们是精确的助手,而不是主人。它们的“洞察的闪光”,这种由系统识别到的“惊奇之举”,是取决于程序框架的,是由主人设定的。
激发了早期AI研究者的图林问题怎么样呢?“机器能否思维”?机器有“智能”吗?在我看来,这种问题对于计算机技术是一种形而上学的问题,因为“思维”和“智能”都不是清晰定义的计算机科学或AI的概念。
这就是我们今天所能说的一切。如果一个程序产生出一种结构,该结构可以解释为一种新概念,那么所用变换规则就隐含地包含了这种概念和相应的数据结构。引导这些规则应用的算法,使得这种隐含给出的概念和数据结构变得明白起来。在关于AI的哲学讨论中,多数含混都是由AI的术语引起的,它是在技术意义上引入的,但是却结合进了一些往往是陈旧的和精致的哲学和心理学意义。在其他学科中,我们不得不与传统的术语和概念生活在一起,同样,如果将它们从其技术内容中抽象出来,那么它们就可能是高度含混的。“人工智能”(AI)中的“智能”概念就是一个例子。
一个常常迷惑哲学家的术语是AI中“知识”的用法。让我再一次强调,在“以知识为基础的系统”术语中的“知识”具有技术上的意义,并不声称要解释整个哲学的、心理学的或社会学的知识概念。在AI技术中,作为实际的计算机科学的部分,完全没有涉及到哲学还原论。
在所谓的“以知识为基础的系统”中的“知识处理”意味着一种新的复杂信息处理,这要与过去的仅仅是数字的数据处理区别开来。它涉及到翻译和解释的复杂变换规则,其特点是处于编程语言(今天是LISP或PROLOG)层次结构的较高水平上。这种水平接近于自然语言,但是当然不是等同于自然语言,而只是抓住了人类知识的广泛意义的一些方面(图5.12)。然而,知识处理仍然是程序控制的,并处在莱布尼茨的思维机械化的传统中。
如果人的精神被认为一种图林类型的计算机,那么支配着人的身体和大脑的自然规律之间就没有什么关联。计算机软件中的算法程序并不取决于物理机械的硬件,而取决于数学上理想化的图林机概念。但是如果把人的精神理解为自然进化的产物,那么关于人的精神的形成的物理、化学和生物学的规律的关联性就必须加以考察。在现代物理学中,基本的物质理论是量子力学。在经典物理学中,物理系统的相互作用被设想成与人类观察者完全无关的过程,而现在看来人的意识也在测量过程中起着关键性的作用。首先,我将要尽量地批判这些解释,但是采取怀疑式的探究方式。然而,业已表明,量子力学是高效的广义量子计算机和量子复杂性理论的物理学框架,它们与经典的图林机和经典的复杂性理论是不相同的。
显然,图林机可以在经典物理学框架中得到解释(图5.13)。这种计算机是一个物理系统,其动力演化使之从一组输入状态之一进入到一组输出状态之一。状态以某种系列方式加以标记。让机器处于一定输入水平的某个状态,随之进行某种确定性运动,然后再测量其输出状态。对于一个经典确定性系统,所测得的输出标记是输入标记的一个函数f。原则上,该标记值可以由外部观察者进行测量,这就是说该机器计算出了函数f。但是,经典的随机计算机和量子计算机并不计算上述意义上的函数。一台随机计算机的输出状态是随机的,依赖于输入状态的可能输出只是某种几率分布函数。量子计算机的输出状态,尽管完全是由输入状态确定的,但并非可观测的,因此观测者一般很难发现其标记。原因何在?我们必须记住量子力学的一些基本概念,这在2.3节中已经谈论过。
经典的确定论机器:
输入→输出
经典可观测量确定论演化经典可观测量
经典随机计算机:
输入→输出
经典可观测量随机演化经典可观测量
量子计算机
输入→输出
量子可观测量确定论演化量子可观测量
图5.13经典的和非经典的计算机
在量子力学中,如动量或位置这样的矢量,必须用算符来代替,此种算符满足某种依赖于普朗克量子的非对易关系(图2.18)。由哈密顿函数描述的经典系统被量子系统代替,例如,电子或光子用哈密顿算符来描述。量子系统的状态由希尔伯特空间的矢量来描述,由其哈密顿算符的本征矢量来确定空间距离。算符状态的因果动力学是由叫做薛定谔方程的偏微分方程确定的。经典的可观测量是可对易的,而且总是取确定值,而非经典的量子系统的可观测量则不可对易,一般没有共同的本征矢量,结果也就没有确定的本征矢量。对于量子状态的可观测量,可以计算的只是统计的预期值。
与经典力学的一个主要区别在于叠加原理。它揭示了量子力学的线性特征。在一个关联的纯量子叠加态,可观测量只有不定的本征值。简言之,量子力学的叠加或线性原理提供了复合系统相关(“关联”)状态,这得到了EPR实验的高度确证(Alain Aspect,1981)。从哲学上看,(量子)整体要大于其部分的加和。
叠加原理对于量子系统的测量有重要的后果。在量子形式化中,一个量子系统和一套测量装置由两个希尔伯特空间来表示,它们以张量积组合起来H=H1H2。以H1和H2分别出于两个独立的状态和,在时刻O,测量系统的始态(O),相应有(O)=。两个系统的因果发展是由薛定谔方程确定的,即(t)=U(t)(O),U(t)是归一化算符。由于U(t)的线性,态(t)是与不定本征值关联的,而测量仪器在时刻t显示出一定的测量值,它们显示出不同的测量值。因此,线性的量子动力学不可能解释测量过程。
以更通俗的方式来说明测量过程,可以用薛定谔的一个关于猫的思想实验,其中涉及“死”和“生”两个状态的线性叠加(图5.14a)。设想一只猫,被关在一个封闭箱子中。箱子中装有镭,镭一小时发生一次衰变,其几率为1/2。如果发生了衰变,电路闭合,引起相应机制的动作,使得小锤打破装有氰氢酸的小瓶,从而杀死这只猫。该箱子继续保持封闭一小时。
按照量子力学,猫的两种可能状态——死和生——都是不确定的,直到观测者打开箱子才能得到结论。对于箱子中的猫的状态,如薛定谔解释的,量子力学预见了一种相关(“关联”)的叠加态,即猫的死和活各占一半。按照测量过程,“死”和“活”状态被解释为测量指示器,代表着镭“发生了衰变”或“未发生衰变”状态。
在玻尔、海森伯和其他人的哥本哈根解释中,测量过程被解释为所谓的“波包坍缩”,即把叠加态分裂成测量仪器的两个状态,并测得了量子系统有两个确定的本征值。显然,我们必须把量子系统的线性动力学与测量的非线性动作区别开来。原因在于,世界的非线性常常被解释为人的意识突现。
欧基尼·威格纳(1961)主张,薛定谔方程的线性,对于有意识的观测者可能不适用,应该以某种非线性程序来代替,据此其中的任何一种选择都可以得到解决(图5.14b)。但是,威格纳的解释使我们不得不去相信,复杂的量子线性叠加仅仅在宇宙中出现了人这样的意识的角落,才将被分解为独立的部分
责任编辑:
相关文章: